POR QUE O SANGUE TIPO A PREDISPÕE A UM MAIOR RISCO DE INFECÇÃO PELO SARS-COV-2? UMA POSSÍVEL RESPOSTA BASEADA NA LITERATURA

Autores

  • José Caetano Silva-Filho UNIESP Centro Universitário Escola de Ensino Superior do Agreste Paraibano (EESAP)
  • Cynthia Germoglio Farias Melo UNIESP Centro Universitário Faculdade Ciências Médicas (FCM)
  • Wilson José de Miranda Lima UNIESP Centro Universitário Universidade Federal da Paraíba (UFPB)

Resumo

O mundo vive um dos momentos mais difíceis da história com a ocorrência da pandemia da COVID-19, doença causada pelo SARS-CoV-2, um novo tipo de coronavírus. Esforços tem sido empreendidos para se chegar a um tratamento específico o mais rápido possível, embora isso dependa do entendimento de sua fisiopatologia. Recentemente, estudos tem indicado que o sistema sanguíneo ABO interfere na progressão da doença, onde pessoas com sangue tipo A apresentam maior chance de serem infectadas e/ou de manifestarem o quadro grave. Procurando entender qual ou quais seriam as razões para essas observações, realizamos um levantamento bibliográfico sobre os aspectos genéticos e bioquímicos do sistema ABO e do SARS-CoV-2, a partir do qual elaboramos uma possível explicação que pode ser utilizada para  pesquisas futuras.

Biografia do Autor

José Caetano Silva-Filho, UNIESP Centro Universitário Escola de Ensino Superior do Agreste Paraibano (EESAP)

Bacharel em Ciências Biológicas (2011) e Mestre em Biologia Celular e Molecular (2013) pela Universidade Federal da Paraíba. Doutor em Biotecnologia de Recursos Naturais pela Universidade Federal do Ceará (2017). Atualmente é professor do Centro Universitário UNIESP (João Pessoa/PB) e da Escola de Ensino Superior do Agreste Paraibano - EESAP (Guarabira/PB). Foi Professor Substituto de Biofísica da Universidade Federal da Paraíba (Campus II - Areia/PB) entre 2017 e 2019. Tem experiência em Biologia Molecular Estrutural, especificamente na elucidação de estruturas tridimensionais de proteínas por difração de raios X e em modelagem e docking moleculares, e em docência do ensino superior

Referências

AHMAD, Imran; RATHORE, Farooq Azam. Neurological manifestations and complications of COVID-19: a literature review. Journal Of Clinical Neuroscience, [s.l.], v. 77, n. 1, p. 8-12, jul. 2020. Elsevier BV. http://dx.doi.org/10.1016/j.jocn.2020.05.017.

ASADI-POOYA, Ali A.; SIMANI, Leila. Central nervous system manifestations of COVID-19: a systematic review. Journal Of The Neurological Sciences, [s.l.], v. 413, n. 1, p. 1-4, jun. 2020. Elsevier BV. http://dx.doi.org/10.1016/j.jns.2020.116832.

AWASTHI, Mayanka et al. N-terminal domain (NTD) of SARS-CoV-2 spike-protein structurally resembles MERS-CoV NTD sialoside-binding pocket. Research Square, [s.l.], v. 1, n. 1, p. 1-11, 22 jun. 2020. Research Square. http://dx.doi.org/10.21203/rs.3.rs-37300/v1.

BAI, Yang et al. Importance of N-Glycosylation on CD147 for Its Biological Functions. International Journal Of Molecular Sciences, [s.l.], v. 15, n. 4, p. 6356-6377, 15 abr. 2014. MDPI AG. http://dx.doi.org/10.3390/ijms15046356.

BATISSOCO, Ana Carla; NOVARETTI, Marcia Cristina Zago. Aspectos moleculares do Sistema Sangüíneo ABO. Revista Brasileira de Hematologia e Hemoterapia, [s.l.], v. 25, n. 1, p. 47-58, mar. 2003. Elsevier BV. http://dx.doi.org/10.1590/s1516-84842003000100008.

BENVENUTO, Domenico et al. The 2019 new coronavirus epidemic: evidence for virus evolution. Journal Of Medical Virology, [s.l.], v. 92, n. 4, p. 455-459, 7 fev. 2020. Wiley. http://dx.doi.org/10.1002/jmv.25688.

BUONSENSO, Danilo et al. Social consequences of COVID-19 in a low resource setting in Sierra Leone, West Africa. International Journal Of Infectious Diseases, [s.l.], v. 97, n. 1, p. 23-26, ago. 2020. Elsevier BV. http://dx.doi.org/10.1016/j.ijid.2020.05.104.

CHEN, Yu; LIU, Qianyun; GUO, Deyin. Emerging coronaviruses: genome structure, replication, and pathogenesis. Journal Of Medical Virology, [s.l.], v. 92, n. 4, p. 418-423, 7 fev. 2020. Wiley. http://dx.doi.org/10.1002/jmv.25681.

COHEN, Miriam; HURTADO-ZIOLA, Nancy; VARKI, Ajit. ABO blood group glycans modulate sialic acid recognition on erythrocytes. Blood, [s.l.], v. 114, n. 17, p. 3668-3676, 22 out. 2009. American Society of Hematology. http://dx.doi.org/10.1182/blood-2009-06-227041.

COHEN, Miriam; VARKI, Ajit. A modulation of glycan recognition by clustered saccharide patches. International Review of Cell and Molecular Biology, [s.l.], v. 308, p. 75-125, 9 jan. 2014. Elsevier BV. https://dx.doi.org/10.1016/B978-0-12-800097-7.00003-8

CONNORS, Jean M.; LEVY, Jerrold H. COVID-19 and its implications for thrombosis and anticoagulation. Blood, [s.l.], v. 135, n. 23, p. 2033-2040, 4 jun. 2020. American Society of Hematology. http://dx.doi.org/10.1182/blood.2020006000.

COOLING, Laura. Blood Groups in Infection and Host Susceptibility. Clinical Microbiology Reviews, [s.l.], v. 28, n. 3, p. 801-870, 17 jun. 2015. American Society for Microbiology. http://dx.doi.org/10.1128/cmr.00109-14.

CSERTI, Christine M.; DZIK, Walter H. The ABO blood group system and Plasmodium falciparum malaria. Blood, [s.l.], v. 110, n. 7, p. 2250-2258, 1 out. 2007. American Society of Hematology. http://dx.doi.org/10.1182/blood-2007-03-077602.

DANIELS, Geoff; REID, Marion E. Blood groups: the past 50 years. Transfusion, [s.l.], v. 50, n. 2, p. 281-289, fev. 2010. Wiley. http://dx.doi.org/10.1111/j.1537-2995.2009.02456.x.

DEBUC, Benjamin; SMADJA, David M. Is COVID-19 a New Hematologic Disease? Stem Cell Reviews And Reports, [s.l.], v. 1, n. 1, p. 1-5, 12 maio 2020. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s12015-020-09987-4.

DEGAREGE, Abraham et al. Effect of the ABO blood group on susceptibility to severe malaria: a systematic review and meta-analysis. Blood Reviews, [s.l.], v. 33, n. 1, p. 53-62, jan. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.blre.2018.07.002.

DEVAUX, Christian A.; ROLAIN, Jean-marc; RAOULT, Didier. ACE2 receptor polymorphism: susceptibility to sars-cov-2, hypertension, multi-organ failure, and covid-19 disease outcome. Journal Of Microbiology, Immunology And Infection, [s.l.], v. 53, n. 3, p. 425-435, jun. 2020. Elsevier BV. http://dx.doi.org/10.1016/j.jmii.2020.04.015.

ELLINGHAUS, David et al. Genomewide Association Study of Severe Covid-19 with Respiratory Failure. New England Journal Of Medicine, [s.l.], v. 1, n. 1, p. 1-13, 17 jun. 2020. Massachusetts Medical Society. http://dx.doi.org/10.1056/nejmoa2020283.

FRANCHINI, Massimo; BONFANTI, Carlo. Evolutionary aspects of ABO blood group in humans. Clinica Chimica Acta, [s.l.], v. 444, n. 1, p. 66-71, abr. 2015. Elsevier BV. http://dx.doi.org/10.1016/j.cca.2015.02.016.

GE, Xing-yi et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature, [s.l.], v. 503, n. 7477, p. 535-538, 30 out. 2013. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/nature12711.

GHEBLAWI, Mahmoud et al. Angiotensin-Converting Enzyme 2: sars-cov-2 receptor and regulator of the renin-angiotensin system. Circulation Research, [s.l.], v. 126, n. 10, p. 1456-1474, 8 maio 2020. Ovid Technologies (Wolters Kluwer Health). http://dx.doi.org/10.1161/circresaha.120.317015.

GONZÁLEZ-SANGUINO, Clara et al. Mental health consequences during the initial stage of the 2020 Coronavirus pandemic (COVID-19) in Spain. Brain, Behavior, And Immunity, [s.l.], v. 87, n. 1, p. 172-176, jul. 2020. Elsevier BV. http://dx.doi.org/10.1016/j.bbi.2020.05.040.

GORDON, David E. et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, [s.l.], v. 1, n. 1, p. 1-32, 30 abr. 2020. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/s41586-020-2286-9.

GROOT, Hilde E. et al. Genetically Determined ABO Blood Group and its Associations With Health and Disease. Arteriosclerosis, Thrombosis, And Vascular Biology, [s.l.], v. 40, n. 3, p. 830-838, mar. 2020. Ovid Technologies (Wolters Kluwer Health). http://dx.doi.org/10.1161/atvbaha.119.313658.

GULATI, Aishwarya et al. A Comprehensive Review of Manifestations of Novel Coronaviruses in the Context of Deadly COVID-19 Gl. The American Journal Of The Medical Sciences, [s.l.], v. 1, n. 1, p. 1-71, maio 2020. Elsevier BV. http://dx.doi.org/10.1016/j.amjms.2020.05.006. Disponível em: https://doi.org/10.1016/j.amjms.2020.05.006. Acesso em: 22 jun. 2020.

HODGES, Kate. Warriors, Witches, Women: Mythology's Fiercest Females. Westminster: White Lion Publishing, 2020.

HOFFMANN, Markus et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, [s.l.], v. 181, n. 2, p. 271-280, abr. 2020. Elsevier BV. http://dx.doi.org/10.1016/j.cell.2020.02.052.

HOSOI, Eiji. Biological and clinical aspects of ABO blood group system. The Journal Of Medical Investigation, [s.l.], v. 55, n. 34, p. 174-182, 2008. University of Tokushima Faculty of Medicine. http://dx.doi.org/10.2152/jmi.55.174.

KIRCHDOERFER, Robert N. et al. Stabilized coronavirus spikes are resistant to conformational changes induced by receptor recognition or proteolysis. Scientific Reports, [s.l.], v. 8, n. 1, p. 1-11, 24 out. 2018. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/s41598-018-34171-7.

KOPEL, Jonathan et al. Clinical Insights into the Gastrointestinal Manifestations of COVID-19. Digestive Diseases And Sciences, [s.l.], v. 65, n. 7, p. 1932-1939, 23 maio 2020. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s10620-020-06362-8.

LAN, Jun et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, [s.l.], v. 581, n. 7807, p. 215-220, 30 mar. 2020. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/s41586-020-2180-5.

LU, Guangwen et al. Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature, [s.l.], v. 500, n. 7461, p. 227-231, 7 jul. 2013. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/nature12328.

MAO, Ren et al. Manifestations and prognosis of gastrointestinal and liver involvement in patients with COVID-19: a systematic review and meta-analysis. The Lancet Gastroenterology & Hepatology, [s.l.], v. 5, n. 7, p. 667-678, jul. 2020. Elsevier BV. http://dx.doi.org/10.1016/s2468-1253(20)30126-6.

MENEELY, Phillip et al. Genetis: genes, genomes, and evolution. Genes, Genomes, and Evolution. 2016. ABO Blood Types. Disponível em: https://www.oxfordpresents.com/ms/meneely/abo-blood-types/. Acesso em: 22 jun. 2020.

MILANETTI, Edoardo et al. In-Silico evidence for two receptors based strategy of SARS-CoV-2. Biorxiv, [s.l.], v. 1, n. 1, p. 1-10, 27 mar. 2020. Cold Spring Harbor Laboratory. http://dx.doi.org/10.1101/2020.03.24.006197.

MILLER, C. H. et al. Measurement of von Willebrand factor activity: relative effects of abo blood type and race. Journal Of Thrombosis And Haemostasis, [s.l.], v. 1, n. 10, p. 2191-2197, out. 2003. Wiley. http://dx.doi.org/10.1046/j.1538-7836.2003.00367.x.

NICOLA, Maria et al. The socio-economic implications of the coronavirus pandemic (COVID-19): a review. International Journal Of Surgery, [s.l.], v. 78, n. 1, p. 185-193, jun. 2020. Elsevier BV. http://dx.doi.org/10.1016/j.ijsu.2020.04.018.

ORIOL, R. Genetic control of the fucosylation of abh precursor chains. Evidence for new epistatic interactions in different cells and tissues. European Journal Of Immunogenetics, [s.l.], v. 17, n. 4-5, p. 235-245, ago. 1990. Wiley. http://dx.doi.org/10.1111/j.1744-313x.1990.tb00877.x.

PAULES, Catharine I.; MARSTON, Hilary D.; FAUCI, Anthony S. Coronavirus Infections — More Than Just the Common Cold. Jama, [s.l.], v. 323, n. 8, p. 707-708, 25 fev. 2020. American Medical Association (AMA). http://dx.doi.org/10.1001/jama.2020.0757.

QING, Enya et al. Distinct Roles for Sialoside and Protein Receptors in Coronavirus Infection. Mbio, [s.l.], v. 11, n. 1, p. 1-18, 11 fev. 2020. American Society for Microbiology. http://dx.doi.org/10.1128/mbio.02764-19.

SADLER, J. Evan. BIOCHEMISTRY AND GENETICS OF VON WILLEBRAND FACTOR. Annual Review Of Biochemistry, [s.l.], v. 67, n. 1, p. 395-424, jun. 1998. Annual Reviews. http://dx.doi.org/10.1146/annurev.biochem.67.1.395.

SHER, Leo. The impact of the COVID-19 pandemic on suicide rates. Qjm: An International Journal of Medicine, [s.l.], v. [], n. [], p. 1-17, 15 jun. 2020. Oxford University Press (OUP). http://dx.doi.org/10.1093/qjmed/hcaa202. Disponível em: https://doi.org/10.1093/qjmed/hcaa202. Acesso em: 15 jun. 2020.

SHOEMAKER, Robin et al. ACE2 deficiency reduces cell mass and impairs cell proliferation in obese C57BL/6 mice. American Journal Of Physiology-endocrinology And Metabolism, [s.l.], v. 309, n. 7, p. 621-631, 1 out. 2015. American Physiological Society. http://dx.doi.org/10.1152/ajpendo.00054.2015.

STOWELL, Sean R.; STOWELL, Christopher P. Biologic roles of the ABH and Lewis histo blood group antigens part II: thrombosis, cardiovascular disease and metabolism. Vox Sanguinis, [s.l.], v. 114, n. 6, p. 535-552, 14 maio 2019. Wiley. http://dx.doi.org/10.1111/vox.12786.

TORTORICI, M. Alejandra et al. Structural basis for human coronavirus attachment to sialic acid receptors. Nature Structural & Molecular Biology, [s.l.], v. 26, n. 6, p. 481-489, jun. 2019. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/s41594-019-0233-y.

ULRICH, Henning; PILLAT, Micheli M. CD147 as a Target for COVID-19 Treatment: suggested effects of azithromycin and stem cell engagement. Stem Cell Reviews And Reports, [s.l.], v. 16, n. 3, p. 434-440, 20 abr. 2020. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s12015-020-09976-7.

UNEKE, C. J. Plasmodium falciparum malaria and ABO blood group: is there any relationship?. Parasitology Research, [s.l.], v. 100, n. 4, p. 759-765, 18 out. 2006. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s00436-006-0342-5.

WALLS, Alexandra C. et al. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell, [s.l.], v. 181, n. 2, p. 281-292, abr. 2020. Elsevier BV. http://dx.doi.org/10.1016/j.cell.2020.02.058.

WANG, Ke et al. SARS-CoV-2 invades host cells via a novel route: cd147-spike protein. Biorxiv, [s.l.], v. 1, n. 1, p. 1-10, 14 mar. 2020. Cold Spring Harbor Laboratory. http://dx.doi.org/10.1101/2020.03.14.988345. Disponível em: https://doi.org/10.1101/2020.03.14.988345. Acesso em: 22 jun. 2020.

WANG, Qihui et al. Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell, [s.l.], v. 181, n. 4, p. 894-904, maio 2020. Elsevier BV. http://dx.doi.org/10.1016/j.cell.2020.03.045.

WORLDOMETERS. COVID-19 coronavirus pandemic. Delaware, 2020. Disponível em https://www.worldometers.info/coronavirus/. Acesso em: 22 jun. 2020.

WU, Yi-chi; CHEN, Ching-sung; CHAN, Yu-jiun. The outbreak of COVID-19. Journal Of The Chinese Medical Association, [s.l.], v. 83, n. 3, p. 217-220, mar. 2020. Ovid Technologies (Wolters Kluwer Health). http://dx.doi.org/10.1097/jcma.0000000000000270.

ZHANG, Chi et al. Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. International Journal Of Antimicrobial Agents, [s.l.], v. 55, n. 5, p. 1-6, maio 2020. Elsevier BV. http://dx.doi.org/10.1016/j.ijantimicag.2020.105954.

ZHANG, Yong-zhen; HOLMES, Edward C. A Genomic Perspective on the Origin and Emergence of SARS-CoV-2. Cell, [s.l.], v. 181, n. 2, p. 223-227, abr. 2020. Elsevier BV. http://dx.doi.org/10.1016/j.cell.2020.03.035.

ZHAO, Jiao et al. Relationship between the ABO Blood Group and the COVID-19 Susceptibility. Medrxiv, [s.l.], v. 1, n. 1, p. 1-18, 16 mar. 2020. Cold Spring Harbor Laboratory. http://dx.doi.org/10.1101/2020.03.11.20031096.

ZIETZ, Michael; TATONETTI, Nicholas P. Testing the association between blood type and COVID-19 infection, intubation, and death. Medrxiv, [s.l.], v. 1, n. 1, p. 1-17, 11 abr. 2020. Cold Spring Harbor Laboratory. http://dx.doi.org/10.1101/2020.04.08.20058073.

Downloads

Publicado

2020-09-02

Edição

Seção

Artigos